C5 331, Fall 2024 | Tolay: -PSD mitives
\nLetur 18 (10130)
\n- Linear regression
\n- Hlyos for LP
\nPSD matrix (Sotro:25tm UNM case:
\n
\nMdtix (sato:25tm UNM case:
\n1) diag x and thus
\n
$$
\Delta V = \frac{A_{x} \sqrt{\frac{V_{1}^{T}}{V_{2}^{T}}}}{\lambda_{x} \sqrt{\frac{V_{2}^{T}}{V_{3}^{T}}}}
$$
\n
$$
\Delta V = \frac{A_{x} \sqrt{\frac{V_{1}^{T}}{V_{2}^{T}}}}{\lambda_{x} \sqrt{\frac{V_{1}^{T}}{V_{3}^{T}}}}
$$

2) anything
$$
\times
$$
 (saythin) else)
\n
$$
1 = \frac{1}{n} \sqrt{\frac{1}{1 - \frac{1}{n} \cdot \frac{1}{n} \cdot
$$

$$
Spectral Heorem: \# Symmetric ME R^{bcd}
$$
\n
$$
M = \bigcup \bigcup U^{T} \qquad \bigcup_{northonormal} I = T
$$
\n
$$
= \sum_{i \in \Omega} \lambda_{i} U: U_{i}^{T} \qquad \bigcup_{n \in M_{i} \cup n_{i} \cup n_{i}} I_{n_{i}} \qquad \bigcup_{n_{i} \cup n_{i}} I_{n_{i}} \qquad \bigcup_{n_{i} \in \Omega} I_{n
$$

"Every PSD matrix is an ellipse"
\n
$$
\frac{\lambda_{1}}{\lambda_{2}}
$$
\nWe say (U_{1}, λ) is eisvev eisval at M
\nif: $Mu = \lambda U$ "eisper"'
\n
$$
U_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{4}
$$
\n
$$
V_{5}
$$
\n
$$
V_{6}
$$
\n
$$
V_{7}
$$
\n
$$
V_{8}
$$
\n
$$
V_{9}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{1}
$$
\n
$$
V_{1}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n
$$
V_{2}
$$
\n
$$
V_{2}
$$
\n
$$
V_{2}
$$
\n
$$
V_{3}
$$
\n
$$
V_{1}
$$
\n
$$
V_{2}
$$
\n<

 M ain Claim: $\{gt M\}$ be symmetric, δ ^kd. H PSD ift $\bigcup_{\tau} M_{\nu} > 0$ $\forall v \in \mathbb{R}^d$ Proof: $\bigcup_{i\in\mathbb{Z}}$ \geq $\bigcap_{i\in\mathbb{Z}}$ \geq \geq \geq \geq \geq \geq M not $PSD \Rightarrow \lambda_i < O$ for some i $\Rightarrow U_i^T M U_i = U_i^T (x_i U_i) < 0$ M is PSD \Rightarrow $V\left(\sum_{i\in\Omega}\lambda_{i}\,u_{i}u_{i}^{\tau}\right)V$ $=\sum \lambda_i (u_i^{\tau}v)^2 > 0.$ $i\in\Omega$ 20 20

^e g M PSD means Mi 20 let ^v ei

Convexity in \mathbb{R}^d (Part VI, Section S.I) Of X C RO. We say X is convex if it cartachy of it is We say $f: X \to R$ is cancer if: $\subseteq \mathbb{R}^d$ \bullet γ corvex . All $(-)$ restrictions of f are convex (stay at /below the [Le]

Two examples so far:
\nSetting 3.
$$
x \rightarrow \pi
$$
 π \rightarrow 0 = 1
\nSection 2. $\rightarrow \pi$ = { $x \in \mathbb{R}^{\circ}$ | $Ax \leq b$ }
\n \rightarrow { $(x) = C^{T}x$ (LP)
\n
\n \rightarrow is convex: \rightarrow { $ax \rightarrow ax$ $a^{T}x=b$

 $Fat \mid$: $f_{10}(u) = f_{10}(+) + f_{11}'(+) (u+)$ Il dove the tangent line" $Fx+2:$ $f_{10}(+)$ $f''_{\omega}(+) > 0$

$$
|M \mathbb{R}^{d} : f \text{ is anew}
$$
\n
$$
Fdd | : f(y) \geq f(x) + \underbrace{\text{Of}(x)^{T}(y-x)}_{\text{the "target line"}}
$$

Fact $2: V^{T}(\mathbb{R}) \vee Z$ HUER

$$
\int_{\text{real}} \text{Coul·min} \sum_{x \in R^{0}} \left(\frac{a_{i}^{T} x - b_{i}}{x} \right)^{2}
$$
\n
$$
\text{model of relativity is linearly independent.}
$$
\n
$$
\int_{\text{real}} \text{M (Hui-linear's root.)}
$$
\n
$$
\int_{\text{real}} \text{M (Hui-linear's root.)}
$$
\n
$$
\int_{\text{real}} \text{M (Hui-linear's root.)}
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$
\n
$$
= \left(\frac{A}{1} x - b \right)^{T} \left(\frac{A}{1} x - b \right)
$$

First: if
$$
f(x) = x^{r}Mx + y^{r}x
$$

\nthen $f f(x) = 2M$

\nRegression is **convex** $\frac{1}{\sqrt{2}}$

\nFor "niu" M we can solve that using $\frac{1}{\sqrt{2}}$ (d:30001)

\nSuch: Suppose $M = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ (d:30001)

\n $f(x) = \begin{pmatrix} \lambda_1 x_1^2 + V_1 x_1 \end{pmatrix} + \begin{pmatrix} \lambda_2 x_2^2 + V_2 x_1 \\ 0 & x \end{pmatrix}$

\nonly get to pick one hard Secu:

\n $M = \frac{1}{2\lambda_1}$ perfect for X_1

Selfect	Wleibot by factor $\frac{\lambda_2}{\lambda_1}$
Testes π $\frac{\lambda_1}{\lambda_2}$ itexists to be done.	
First π $\frac{\lambda_1}{\lambda_2}$ itexists to be done.	
General Case: $M = U \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_4 & \lambda_5 \end{pmatrix} U^T$	
From the special is M'' ?	
By problem π $U \neq I$	
Output with a output with a output with U and U	

Hlgos for LP (Post VI, Section S.3) $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ \mathbf{b} - Constrained non smooth how to solve? Stronsty polynomial : Open "Smale's 9th problem" $W^{2d}(q)$ polynomial: $W^{2d}(q)$ great in profile! \bullet $[0$ most influential of 20^{x} Centry NYT headline Breakthrough in Problem Solving

Idea 3: CPM "binary seach in R^{ou} . Works for all convex functions · My favorite also i $|n|$ $|\neg \delta$: $f'(x)$ lets you binary search $|v R_d :$ Use $Df(x)$ FIFA If planes through Center-of-growity K , \geq 30 % on both sides. Decresse Volume!